$rings_1^{6,26}$

DIR: rng_sig_object_directory STM: rng_sig_inc ABS: IsRing(T; plus; zero; neg; times; one) ring_p STM: ring_p_wf ABS: Rng **rng** STM: rng_wf STM: rng_properties $STM: rng_all_properties$ STM: assert_of_rng_eq STM: decidable__rng_eq ABS: CRng crng STM: crng_wf STM: crng_properties STM: crng_all_properties ABS: $r \downarrow \text{xmn mul_mon_of_rng}$ STM: mul_mon_of_rng_wf STM: mul_mon_of_rng_wf_c STM: mul_mon_of_rng_wf_a STM: mul_mon_of_rng_wf_b ABS: $r \downarrow + \text{gp} \text{ add}_{-} \text{grp}_{-} \text{of}_{-} \text{rng}$ STM: add_grp_of_rng_wf STM: add_grp_of_rng_wf_a STM: rng_minus_over_plus STM: rng_minus_minus

STM: rng_minus_zero

STM: rng_plus_inv

STM: rng_plus_inv_assoc

STM: rng_plus_zero

STM: rng_plus_cancel_l

STM: rng_plus_assoc

STM: rng_times_assoc

STM: rng_times_one

STM: crng_times_comm

STM: crng_times_ac_1

STM: rng_times_over_plus

STM: rng_times_zero

STM: rng_times_over_minus

STM: rng_plus_comm

STM: add_grp_of_rng_wf_b

STM: rng_plus_ac_1

STM: ring_triv

ABS: $\Sigma(r) \ i \le k < j$. E(k) rng_sum

STM: rng_sum_wf

STM: comb_for_rng_sum_wf

ABS: $\Pi(r) \ i \le k < j$. $E(k) \operatorname{rng_prod}$

 $STM: rng_prod_wf$

ABS: $a \downarrow + nsgp nsgrp_of_ideal$

STM: nsgrp_of_ideal_wf

ABS: $a \mid b$ in r ring_divs

STM: ring_divs_wf

ABS: $r \neq 0$ ring_non_triv

STM: ring_non_triv_wf

ABS: IsIntegDom(r) integ_dom_p STM: integ_dom_p_wf STM: sq_stable__integ_dom_p ABS: IsField(r) field_p STM: field_p_wf STM: any_field_is_integ_dom ABS: IntegDom $\{i\}$ integ_dom STM: integ_dom_wf ABS: Field $\{i\}$ field ABS: r-Prime(u) rprime STM: rprime_wf ABS: S Ideal of R $\mathbf{ideal_p}$ STM: ideal_p_wf ABS: $Ideal(r){i}$ ideal STM: ideal_wf ABS: (0r) **zero_ideal** STM: zero_ideal_wf ABS: (1r) one_ideal STM: one_ideal_wf ABS: (a)r princ_ideal STM: princ_ideal_wf STM: ideal_defines_eqv STM: det_ideal_ap_elim STM: det_ideal_defines_eqv ABS: Carrier(r/d) **quot_ring_car** STM: quot_ring_car_wf

STM: $quot_ring_car_qinc$

ABS: r / d quot_ring

STM: quot_ring_wf

- STM: type_inj_wf_for_qrng
- STM: quot_ring_car_elim
- STM: quot_ring_car_elim_a

STM: quot_ring_car_elim_b

- STM: all_rng_quot_elim
- STM: all_rng_quot_elim_a
- STM: rng_car_qinc
- ABS: IsPrimeIdeal(R; P) prime_ideal_p
- STM: prime_ideal_p_wf
- $STM: sq_stable_prime_ideal$
- ABS: IsMaxIdeal(r;m) **max_ideal_p**
- STM: $max_ideal_p_wf$
- ABS: rng_hom_p(r;s;f) rng_hom_p
- STM: rng_hom_p_wf
- ABS: rng_chom_p(r;s;f) **rng_chom_p**
- STM: rng_chom_p_wf
- ABS: RingHom(R;S) ring_hom
- STM: ring_hom_wf
- ABS: nat(r;a) ring_quot_hom
- $STM: idom_alt_char$
- STM: $quot_by_prime_ideal$
- STM: princ_ideal_mem_cond
- STM: ideal_of_prime
- ABS: \mathbb{Z} -rng int_ring
- STM: int_ring_wf

ABS: $(i)\mathbb{Z}$ -det-fun **int_pi_det_fun** STM: $int_pi_det_fun_wf$ STM: int_pi_detach STM: prime_ideals_in_int_ring ABS: choose(n;i) **choose** STM: choose_wf STM: comb_for_choose_wf ABS: $e \uparrow r n \operatorname{\mathbf{rng_nexp}}$ STM: rng_nexp_wf STM: comb_for_rng_nexp_wf ABS: $n \cdot r \ e \ \mathbf{rng_nat_op}$ STM: rng_nat_op_wf STM: comb_for_rng_nat_op_wf STM: rng_nexp_zero STM: rng_nexp_unroll STM: rng_nat_op_one STM: rng_nat_op_add STM: rng_sum_unroll_base STM: rng_sum_unroll_hi STM: rng_sum_unroll_unit STM: rng_sum_unroll_lo STM: rng_sum_shift STM: rng_sum_split STM: rng_sum_plus STM: rng_times_sum_l

STM: rng_times_sum_r

STM: rng_times_nat_op

STM: $rng_times_nat_op_r$

STM: binomial

STM: sum_of_geometric_prog

ABS: when $b. p \operatorname{rng}_{}when$

STM: rng_when_wf

STM: comb_for_rng_when_wf

STM: rng_times_when_l

STM: rng_times_when_r

STM: rng_when_of_zero

STM: rng_when_thru_plus

STM: rng_when_when

STM: rng_when_swap

 $http://www.nuprl.org/FDLcontent/p0_400045_/p79_151999_{rings_1}.html$